高等數(shù)學(xué)是讓許多考生頭疼的一門科目,同時也是考研數(shù)學(xué)中比例較大的一門科目?佳袀淇家呀(jīng)進入到了最后的沖刺階段,為了幫助考生在最后的時間內(nèi)將高等數(shù)學(xué)復(fù)習(xí)好,唯學(xué)網(wǎng)小編為考生們整理了高等數(shù)學(xué)的重要知識點,希望對考生們能有所幫助。
第一章 函數(shù)、極限與連續(xù)
1、函數(shù)的有界性
2、極限的定義(數(shù)列、函數(shù))
3、極限的性質(zhì)(有界性、保號性)
4、極限的計算(重點)(四則運算、等價無窮小替換、洛必達法則、泰勒公式、重要極限、單側(cè)極限、夾逼定理及定積分定義、單調(diào)有界必有極限定理)
5、函數(shù)的連續(xù)性
6、間斷點的類型
7、漸近線的計算
第二章 導(dǎo)數(shù)與微分
1、導(dǎo)數(shù)與微分的定義(函數(shù)可導(dǎo)性、用定義求導(dǎo)數(shù))
2、導(dǎo)數(shù)的計算(“三個法則一個表”:四則運算、復(fù)合函數(shù)、反函數(shù),基本初等函數(shù)導(dǎo)數(shù)表:“三種類型”:冪指型、隱函數(shù)、參數(shù)方程;高階導(dǎo)數(shù))
3、導(dǎo)數(shù)的應(yīng)用(切線與法線、單調(diào)性(重點)與極值點、利用單調(diào)性證明函數(shù)不等式、凹凸性與拐點、方程的根與函數(shù)的零點、曲率(數(shù)一、二))
第三章 中值定理
1、閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值定理、介值定理、零點存在定理)
2、三大微分中值定理(重點)(羅爾、拉格朗日、柯西)
3、積分中值定理
4、泰勒中值定理
5、費馬引理
第四章一元函數(shù)積分學(xué)
1、原函數(shù)與不定積分的定義
2、不定積分的計算(變量代換、分部積分)
3、定積分的定義(幾何意義、微元法思想(數(shù)一、二))
4、定積分性質(zhì)(奇偶函數(shù)與周期函數(shù)的積分性質(zhì)、比較定理)
5、定積分的計算
6、定積分的應(yīng)用(幾何應(yīng)用:面積、體積、曲線弧長和旋轉(zhuǎn)面的面積(數(shù)一、二),物理應(yīng)用:變力做功、形心質(zhì)心、液體靜壓力)
7、變限積分(求導(dǎo))
8、廣義積分(收斂性的判斷、計算)
|
|
||
|
|
||
|
|